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Y,-symmetry on the checkerboard Potts model 
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t Laboratoire de Physique Theorique et Hautes Energies, Paris VI, France5 
$ Centre de Recherches sur les Trks Basses Temperatures, CNRS, BP 166 X, 38042 Grenoble 
Cedex, France 

Received 18 September 1984 

Abstract. The large q expansion of the partition function Z of the checkerboard q-state 
Potts model with a magnetic field is given up to sixth order in q-”2. Up to this order, Z 
is shown to exhibit an unexpected .Y4-symmetry. Using various arguments (exact results, 
expansions, etc) we suggest the general validity of this new symmetry property of the 
considered model. An exact expression for the magnetisation jump is also proposed and 
checked on the large q expansion. 

1. Introduction 

Recently, a large number of new exact results relative to the Potts model has been 
accumulated, so that it appears, at the present time, to be one of the most tantalising 
problems of statistical physics, or even of the theory of critical phenomena. For 
instance one should mention the recent calculation of the critical exponents of the 2~ 

Potts model from the conformal covariance property (Zamolodchikov 1984, Dotsenko 
and Fateev 1984). In this paper, we will concentrate on a general and fruitful model, 
the checkerboard Potts model, for which some progress has been made: (a) an inversion 
relation has been found for this model and its partition function has been obtained at 
criticality (Maillard and Rammal 1983), (b) an exact expression for the latent heat 
has been proposed and checked on the large q expansion (Rammal and Maillard 
1983), and (c) more recently, an exact disorder solution has been obtained for both 
the partition function and the intra-row correlation functions (Baxter 1984, Jaekel and 
Maillard 1984). Furthermore, an intriguing property has been suggested for this model: 
the partition function, as well as other quantities, are symmetric functions of the four 
coupling constants of the model (Jaekel and Maillard 1984). 

The purpose of this paper is: (i)  to show this property for the magnetisation jump 
of the model and (ii) to present various arguments in favour of this curious symmetry. 
The paper is organised as follows. In 9 2 we obtain the large q expansion of the 
checkerboard Potts model in the presence of a magnetic field. As a byproduct, the 
SP,-symmetry of the partition function is checked up to sixth order in q-”*. An exact 
expression for the magnetisation jump is proposed. Making use of the Y,-symmetry 
for the partition function, our suggestion is strongly supported by the q expansion (up 
to order six). In 9 3, all available exact results on that model are collected in order to 

$ Laboratoire associt au CNRS et B I’Universite de Pierre et Marie Curie, 4 Place Jussieu, Tour 16, 75230 
Paris Ctdex 05. France. 
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834 J M Maillard and R Rammal 

confirm that Y,-symmetry. Our conclusion (§  4) will be devoted to discussing the 
relation between this symmetry and more general problems such as exact integrability 
and universality. Technical details relative to the large q expansion are given in the 
appendices. 

2. Large q expansion and magnetisation jump 

2.1. Large q expansion 

The partition function per site Z, of the q-state checkerboard Potts model in the 
presence of a magnetic field is given by 

Z N ( a ,  b, c, d ;  h )  

= n *‘e$.-, n b’~~~.~~i  n c’ox.e, n d’-r-c n h’-,,,.o. 
(U) ( i j )  i i k )  ( k l )  ( l i )  m 

Here a, b, c and d denote the four coupling parameters: a = eKl, b = e h ,  c = eK3 and 
d = eK4 respectively, where Ki ( i  = 1-4) are the coupling constants of the model (see 
figure l ) ,  h denotes the ‘fugacity’ parameter h = eH, where H is the magnetic field. 
Each of the N spins { U }  belongs to E, and the ordered sequences (U), ( j k ) ,  ( k l )  and 
( l i )  denote the edges of the N plaquettes. 

E 

I KL J 

Figure 1. Elementary cell of the checkerboard Potts 
model. the checkerboard Potts model. 

Figure 2. Diagonal transfer matrices associated with 

The large q expansion of the partition function 2 gives the expression of the 
(low-temperature) normalised partition function A defined by Z ( a ,  b, c, d ; h )  = 
(abcd)”’hA(a, b, c, d ;  h ) .  

For convenience, the expansion parameters will be denoted by A = l /a ,  B = 1/ b, 
C = 1 /  c, D = l / d  and z = l / h .  The order of each diagram appearing in the expansion 
will be defined by: 8 = L-2L’  where L is the number of bonds and L’ the number of 
loops. This corresponds to the order 8 in q-”2 near criticality and to small magnetic 
field ( A ,  B, C, D - q-’”, z - 1) .  The first terms of In A are given by 

In A ( A ,  B, C, D ;  z )  

= 0 ( 4 -  1)zABCD (0 = 2)  

+ m ( q  - ~ ) ; Z ~ ( A ~ B * C * D +  A ~ B ~ C D ~ +  A * B C * D ~ +  A B ~ C * D * )  
(0 = 3)  

+ . . . .  
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This expansion is given up to order six (0 = 6 )  in appendix 1 .  Note that the exponent 
of z in this expansion is simply given by the total area of the corresponding diagram. 

One remarks that this expansion is not only invariant under the action of the group 
of the square ClV as it should be (Rammal and Maillard 1983f'), but is also invariant 
under the action of permutation group SP, (symmetric group) acting on the four coupling 
constants A, B, C and D. This is a very curious and unexpected symmetry. In fact, 

such a symmetry property is obvious for many diagrams such as 0, H, I].... , 
etc. However for the other diagrams, one has to bring them together in a specific way 
in order to exhibit such a symmetry. For instance 

(ri+b) : ( q  - 1)z3(A3B3CD + A3BC3D + A3 BCD3 + AB3C3 D + ABC3D3)  

(8.61) : ( q - 1 ) ( q - 2 ) z 4 ( A 3 B 3 C 2 D 2 +  ...). 

Let us mention in particular the following example of disconnected diagrams of order 
six. The disconnected diagrams (m (17 ) have a weight x + y  where 

x = ( - 2 ) (  q - 1)*(  - 2 ) 2 ~ 4 ( A 4 B 3 C 4 D 3 +  A3B4C3D4)  

and 

y = (-7/4)( q - 1 )2(  q - 2)2z4(  A4B4C4D2 + A4B2C4 D4 + A4B4C2 D4  + A' B4C4D4) .  

The y contribution is clearly Y4-symmetric. However the x contribution has to be 
added to the contributions of the following disconnected diagrams 

in order to get an Y4-symmetric contribution 

(-13)(q- 1 ) 2 ( q - 2 ) 2 ~ 4 ( A 4 B 4 C 3 D ' + .  . .). 
One should remark that the way we are bringing the diagrams together corresponds 
to putting together all diagrams having the same chromatic polynomial P ( q )  in their 
associated weights. This way of assembling the various diagrams can be understood 
as follows. If the partition function is actually Y4-symmetric, it has to be symmetric 
order by order in the large q expansion, but also in the low-temperature expansion as 
well as in the high-field expansion. Thus, if one considers the set of diagrams having 
the same L (number of bonds), L' (number of loops) and S (surface) then the sum 
of their contributions has to be Y4-symmetric. Note that at the lowest order, the set 
of triplets ( L ,  L', S )  is in one-to-one correspondence with the chromatic polynomial 

Due to the Y4-symmetry, it is now convenient to introduce the canonical symmetric 
P ( q ) .  

polynomials S, 

S , = A +  B+ C +  D S2= AB+AC + A D +  BC + BD+ CD 

S3 = ABC + ABD + ACD + BCD S4 = ABCD. 

t Note a misprint in equation (2 .5)  of Rammal and Maillard where the partition function is written in terms 
of C4, invariants: one should read C3 =fS,S, - S, instead of fS,- S3. 



836 J M Maillard and R Rammal 

Using these SP,-invariants, the expression of In A becomes (up to the fourth order 
0 = 4 )  

In A = ( q  - 1 ) zS4 + ( q  - 1 )( q - 2 ) i z 2 S 3 S 4  

+ ( q  - l ) (q  - 2 ) (  4 2 -  5 q  + 7)Z4Si+ ( q  - 1) (  q - 2 ) 2 z 3 S z S :  

+ ( q  - l)z2( s: - 2 S z S 4 )  - ;( q - 1 ) z s4 + . * . . 2 2 2  

2.2. Magnetisation discontinuity 

From the previous expression of the partition function of the checkerboard Potts 
model, one easily obtains the jump AM of the magnetisation at criticality ( T =  T,). 
For q > 4, the magnetisation M defined by 

~ = ( q ( ~ v o , o ) - l ) / ( q - l )  

jumps discontinuously at the critical temperature T, from zero ( M  = 0 at T > T,) to a 
positive value ( M > O  at T S  T,). M is given mainly by 

(6co,o) = ha In Z/dhl,,,, = 1 - za In A/dzl ,=, .  

Kim (1981) has rightly conjectured that AM is the same for the square, triangular and 
honeycomb lattices. This common value of M which can be viewed as a consequence 
of the star-triangle relation has been calculated using corner transfer matrices (Baxter 
1982). The result is 

where x is defined ( q  > 4) by 

q = x + 2 +  x-I, O < x < l .  

This exact expression (equation (1 ) )  agrees with the large q expansion on the isotropic 
Potts model on the square lattice (Kim 1981) 

A M = 1 + q - ' - 3 q - 2 - 9 q - 3 - 2 7 q - 4 +  . . . .  

It is natural to ask if this expression also holds for the checkerboard Potts model 
which reduces in different limits to the anisotropic (and of course isotropic) square, 
triangular and honeycomb lattices. Such a question is suggested also by another limit. 
Let us suppose that A, B, C and D are solutions of the following equations 

( 2 )  (4  - l )AB = 1 - ( A +  B ) ,  ( q  - 1 ) CD = 1 - ( c + D ) ,  

These two equations are easily seen to be consistent with the critical condition for the 
checkerboard Potts model 

(9  - 1 )( 4 - 3)s4 = 1 - ( 4  - 2 ) s 3  - s2. (3) 

A straightforward generalisation of Stephen and Mittag's argument, based on the 
star-triangle relation, enables us to show that the diagonal transfer matrices (see figure 
2 )  T(A, B )  and T ( C ,  D )  commute when equations ( 2 )  are satisfied (Stephen and 
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Figure 3. The staggered vertex, of respective weights U, U ’ ,  U”  and U”’ of the equivalent 
inhomogeneous six vertex model (see text). 

Mittag 1972). One thus exhibits a family of commuting matrices, sharing the same 
eigenvector I associated with the largest eigenvalue. Obviously, this eigenvector can 
only be a function of q and is independent of A (or C resp. B and D ) .  Therefore, 
the magnetisation jump, related to the expression (I)o~S~o,,o~I)o) is a function of q only 
and thus equal to AM given by equation (1) .  

From equations (2), one easily obtains the following condition 

( 4  - 1 ),S4 = ( 9  - 3) - ( 9  - 2)SI + ( 9  - 1 )S2 (.4a 1 
or when combined with the critical condition (equation (3)) 

1 + ( q  -3)S, = 2(q - 1)S2+ ( q  - 1)2S3. 

To sum up, the magnetisation jump (restricted by definition to the critical variety 
(equation (3)) reduces to the expression given by equation ( 1 )  on the following algebraic 
variety: ( 4 b )  and A = 0 or 1 (resp B, C, D ) .  Therefore, if one believes that the partition 
function is SP,-symmetric in the presence of a magnetic field, then M (viewed as a 
function of SI, S2 and S,  after eliminating S,)  is equal to the exact expression (equation 
( l ) ) ,  on three hyperplanes 

1 + ( q  - 3) s, = 2( q - 1 )S2  + ( q  - 1 )2s, ( 4 b )  

(q-3)S3+Sz= 1 ( 5 )  

( q  - l ) (q  - 3)S, + ( q 2  - 3q + l)S, - ( q 2  -4q +2)S2 = q2 - 4 q  + 5 .  ( 6 )  

and 

We are now in a position to check, on the large q expansion, if A M  is equal to 
the expression given by equation (1 )  and thus does not depend on {Si}. The full 
expansion of M up to order six in q-’”, is given in appendix 2, in terms of {Si}. 

From (1): AM = 1 - ( q  -3)-’ +O(q-’).  Therefore we have to check that the 
expansion of z(J/az) In A( SI ,  S2, S,, S,)  at z = 1 reduces at criticality to ( q  - 3)-’ - q - 2  - 
3q-3, up to order six in q-1’2.  

For convenience, we will denote ( q  - I ) - ’  and ( q  -3)-’ by a and p respectively. 
Using (3), S4 can be replaced by @[1- ( q  - 2)S3 - S,]. A somewhat tedious algebra 
yields, at the fourth order ( 0 = 4 )  
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z(J/Jz) In A l z = i , ~ = ~ ,  
= ( q - l ) a ~ [ l - ( q - 2 ) S 3 - S , ] + ( q - l ~ ~ q - 2 ~ ~ P ~ 3 ~ ~ - ~ q - ~ ~ ~ 3 + . . . l  

2 2 2  + 4 ( q - l ) ( q - 2 ) ( q 2 - 5 q + 7 ) a 3 P 3 + 3 ( q -  lNq-2)  a P S2 

+ ( q - l ) S : - 2 ( q - l ) a P S 2 - 5 ( q - 1 )  2 2 2  a P 

= ( q  - 3)-’ - q - 2  - 14q-3 + terms of order eight (0 = 8) with S, and S : .  

At orders five and six ( 0 = 5 , 6 )  the cancellation of the S, terms is somewhat 
spectacular: cancellation of 58 terms! At order five, only SI, S2S3 and S3 occur but 
give a vanishing contribution. Furthermore there is no constant term. At order six, 
S:, S:, SIS3, S2S: and S2 are involved but their contributions vanish. The constant 
term appearing at this order is given by 

4 4 4 -  4 4 4  
lO(q-l)(q-2)  CY P 6O(q-l)(q-2) a P +65(q-1) 

~ ( q - 2 )  4 a 4 P 4 -  28(q- 1)(q-2)’(q2-5q+7)a5P5 

+70(q-1)(q-2)2(q2-5q+7) 2 5 s  a p +9(q- l ) (q-2I2  

+ 1 6 ( q - l ) ( q - 2 ) 2 a 3 P 3 + 8 ( q - l ) ( q - 2 )  2 a 3 P 3 -  48(q-1) 

x(q  - 2 ) h 3 ~ 3 - 2 4 ( q  - l ) (q  -2)(q -3)(q2- 5 q  +7)a4P4 
+12(q-1)(q-2)2(q-3)  2 4 p 4-  60(q-1)2 

x ( q - 2 ) ( q ’ - 5 q + 7 ) a 4 P 4 + 3 1 ( q -  1) 3 3 3  a p 

x ( q2 - 5 q  + 7) a5p5 + 6( - l ) a 2 P 2  + 4( - 1) a2P2 

= 1 1 q - 3  + higher order terms. 

Therefore, using the Y4-symmetry of the partition function (up to order six), we 
have been able to give a strong indication that equation ( 1 )  is the exact expression of 
the magnetisation jump on the checkerboard Potts model. 

3. 9’4-symmetry 

In this section we shall collect all pieces of information in favour of the Y4-symmetry 
suggested in the previous sections. This information is of very different origin but is 
of a complementary nature. 

3.1. Exact results at T = T, 

The partition function of the checkerboard Potts model has been calculated exactly 
at T = T, and checked on the large q expansion (Maillard and Rammal 1983). It is 
obviously Y4-symmetric. Furthermore an expression for the latent heat has also been 
conjectured and checked on the large q expansion (Rammal and Maillard 1983). Of 
course, an exact Y4-symmetric expression for the internal energy (at criticality) can 
also be obtained in the same spirit. These features at T = T, are to be considered on 
the same level as the magnetisation jump, where an exact expression has been suggested 
in the previous section. 
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3.2. Exact results at q = 2 and q + 0 

(a) The q = 2 king case, In the limit q = 2 the checkerboard Potts model reduces 
to the so-called generalised square Ising model. The corresponding partition function 
in zero field has been calculated by Utiyama (see e.g. Domb and Green 1972). 
Furthermore, it has been shown that the partition function of this model is actually 
SP4-symmetric (Jaekel and Maillard 1984). Such a symmetry is also obvious on the 
expression of the magnetisation (see e.g. Domb and Green 1972). Of course there is 
no exact expression for the magnetic susceptibility, x, but the approximate expression 
for x proposed by Syozi and Naya (1960) also exhibits SP4-symmetry. Finally, using 
the star-triangle relation and considering this model as a solvable inhomogeneous 
eight vertex model, it can be shown that the partition function has the following form 
(Baxter, private communication) 

4 c 4(K, WK,, K*, K3, K4)) 
i =  I 

where k denotes a symmetric function of the four coupling constants Ki. In this respect, 
the SP4-symmetry appears in this particular case as a consequence of the star-triangle 
relation. 

(b) The q + 0 case. It is known that the partition function of the Potts model can 
be related to that of an ice-type problem on the related medial lattice (Baxter et a1 
1976). It has been noticed that the resulting ice-type model is soluble in the q+O 
limit: in this limit the corresponding weights satisfy the free-fermion condition (Fan 
and Wu 1970). The corresponding partition function in the case of the checkerboard 
model has been examined in detail by Lin and Tang (1976). Therefore one can either 
consider Baxter’s argument, based on the star-triangle relation (Z-invariance) in order 
to prove the SP4-symmetry, or check this symmetry directly on the expression of the 
partition function as shown in appendix 3. 

3.3. Exact results on some algebraic varieties 

A disorder solution for the checkerboard Potts model has been recently obtained 
(Baxter 1984, Jaekel and Maillard 1984). The exact expression for the partition function 
as well as the intra-row correlation functions are known on the algebraic variety of 
codimension one 

a - 1  b - 1  c-1 +---- - 0. d - 1  
( q - l ) d + 1  a + q - 1  b + q - 1  c + q - 1  (7)  

The corresponding partition function is clearly symmetric in the three parameters a, 
b and c. It is quite surprising to see that although the parameter b enters in a very 
different way from a and c, in Baxter’s proof (1984) the final result restores that 
symmetry in agreement with the Y4-symmetry of the partition function. 

3.4. Various expansions 

In addition to all these exact results, different expansions also seem to confirm the 
SP,-symmetry. 

(a) Large q expansions. As shown in 0 2, it is useful to obtain the large q expansion 
up to order seven or eight. In this respect it is appropriate to concentrate on some 
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families of diagrams sharing the same chromatic polynomial and check the 9,- 
symmetry as outlined in P 2.  

(b) High (resp. low) temperature expansion. A resumed high temperature expansion 
has been obtained recently for the checkerboard Potts model (Jaekel and Maillard 
1984). Using duality it is easy to deduce the corresponding low temperature expansion. 
Expanding these results one gets the low T (resp. high T) expansion up to order eight 
in A, B, C and D (resp(1 -A)/[l + ( q -  1)A], etc.). Both expansions exhibit the 
Y,-symmetry. 

4. Conclusion 

In this paper, we have presented different arguments in favour of the existence of an 
Y,-symmetry on the checkerboard Potts model. Some of these arguments are directly 
related to the exact solubility of the model in certain limits ( T =  T,, q = 2 ,  4’0). 
Therefore, the SP,-symmetry appears first as a consequence of the star-triangle relation. 
However, there are also strong indications (large q expansion, disorder solution) that 
this symmetry also exists in general. Clearly, such a symmetry (if exact) should 
correspond to a very intriguing structure of the Potts model. There is no obvious proof 
based on some local symmetry. Furthermore, this symmetry seems to be broken on 
finite size (even with periodic boundary conditions) systems. It would be very interest- 
ing to understand the origin of that curious symmetry: does it come from some 
topological or combinatorial theorem (one can think for instance of the proof given 
by Sherman (1960, 1963) of Feynmann’s counting rule for 2~ Ising model) or is it 
possible to deduce it from simple and general ideas? 

That symmetry, if any, could also shed some light on the analytical behaviour of 
the partition function and other quantities near criticality. From the universality 
hypothesis, the leading critical exponents should not depend on the particular lattice: 
square, triangular, honeycomb. Obviously, these three lattices can be viewed as 
appropriate limits of the checkerboard Potts model. A reasonable expression ( q  < 4) 
for the singular part of the free energy is 

.Ling-  Iz - 1 I * -@ 
where a does not depend on A, B, C, and D but only on q and z. Here z denotes a 
symmetric function of A, B, C and D: the fugacity variable of Hintermann er a1 (1978) 
(see also Rammal and Maillard 1983). 

Beyond this known universality property for the partition function, we have seen 
that the magnetisation jump is a universal quantity ( q  > 4) independent of A, B, C 
and D: this behaviour is to be compared with the exact result for the latent heat. In 
this case, by dividing this expression by some simple and Y,-symmetric function, one 
gets the spontaneous staggered polarisation of the six vertex model, which depends 
only on q (Rammal and Maillard 1983). Because the Y.,-symmetry of the critical 
condition (equation (3)), these remarkable dependences of the checkerboard Potts model 
on the parameters A, B, C and D seem difficult to understand if the partition function 
(with or without field) is not Y,-symmetric, at least near criticality. 
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Appendix 1 

The large q expansion of the normalised partition function per site, for the checkerboard 
Potts model in the presence of a magnetic field up to order six in q - ’ / 2  (A, B, C, 
D - q - ’ l 2 )  is given by 

In A(A, B, C, D ;  z) 

=U (9-  I)zABCD ( 0 = 2 )  

+m f ( q -  ~ ) ( ~ - ~ ) z ~ ( A B ’ C ’ D ’ + .  . .) (0 = 3) 

+P+Q) 
+EH 

( 4 -  l ) ( q - 2 ) 2 ~ 3 ~ 3 ( A 3 C 3 B 2 D 2 + .  . .) (0 = 4) 

( q  - I ) (q  - 2 ) ( q 2 - 5 q + 7 ) ~ 4 A 3 B 3 C 3 D 3  

+ ( q - i ) z 2 ( ~ 2 ~ 2 ~ 2 + . .  .) 

- f (q - I )  2 2 2 2  z A E C 2 D2 

- 4 ( q -  1) ’ (q-2)z3(A2B3C3D3+.  . .) ( 0 = 5 )  

(4 - 1 ) (  4 - 2)z3( A3C3BD2 + . . .) 

3 ( q -  1 ) ( q - 2 ) 3 ~ 4 ( A 3 B 3 C 3 D 4 + .  . .) 

; ( q -  l ) ( q - 2 ) 3 ~ 4 ( A 4 C 4 B 2 D 3 + ,  . .) 

(q- l ) (q-2) (q-3)z4(A3B3C3D2+.  . .) 

f ( q  - l ) ( q  - 2 ) ( q 2 - 5 q + 7 )  2z6( A4B4C4DS + . . .) 

2(q-  l)(q-2)2(q2-5q+7)~5(A4B4C4D3+. . .) 

(9-  l ) ( q - 2 ) 4 ~ ( A S B S C 3 D 3 + .  . .) (0 = 6 )  

3 ( q -  1)(q-2)4zS(A4B4C3DS+.  . .) 
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13(q- l ) (q -2 )  4 5  z A 4 B 4 C 4 D4 

6( - 1)( - 2)’( q2 - 5 q  + 7)z6(A4B4C5D5 + . . .) 

(9 -  l ) ( q - 2 ) 3 ( q 2 - 5 q + 7 ) ~ 6 ( A 5 B 5 C 5 D 3 + .  . .) 

( 4 -  l)(q-2)*(q2-5q+7)*Z7(A5B5C4D6+. . .) 

1 0 ( q - l ) ( q - 2 ) ~ ( q - 5 9 + 7 )  2 7  z A 5 B 5 C5D5 

( q  - I)(q - 2)(q2 - 5 q  + 7 ) 3 ~ 8 ( A 5 B 5 C 6 D 6 + .  . .) 

( q  - l ) (q  - 2 ) ( q 7 + .  . . )z9A6B6C6D6 

( q -  l ) z3 (A3B3CD+.  . .) 

(9 - l )z4A2B2C2D2 

( ~ - ~ ) ( ~ - ~ ) Z ~ ( A ~ B ’ C ~ D ~ + . . . )  

(q -1 ) (q -2 )2z4(A4B4CD3+.  . .) 

(9-  l ) ( q - 2 ) 2 ~ 4 ( A 4 B 4 C 2 D 2 + .  . .) 
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3 ( q -  1 ) (q-2) ’z4(A3B3C2D4+.  . .) 

+&+L-tj 

+w +w 
2 ( q -  I)(q-2)(q2-5q+7)z5(A4B4C4D2+. . .) 

2( - 1 ) (  - 2 ) 2 (  - 3)z5( A4B4C4D2 + . . .) 

4 ( q -  l)(q-2)2(q-3)~s(A4B4C3D3+. . .) 

( q  - I ) (  - 2)(q  - 3 )  ( q 2 - 5 4  + 7)z6(A4B4C3D5 +. . .) 

2 ( q - l ) ( q - 2 ) 2 ( q - 3 )  2 6  z A 4 B 4 C4D4 

+(E3l+B) 
+Em 
+[(U uu)+(cn m) 
+(a $)+( 017 S)] -i3(q-1)2(q-2)2~4(A4B4C3D3+...) 

- 1 2 ( q  - 1)’(q - 2 ) (  q2  - 5q + 7)z5A4B4C4D4 

‘j1(q - 1 ) 3 ~ 3 A 3 B 3 C 3 D 3  

-{( - 1 ) 2 (  - 2 ) 2 ~ 4 ( A 4 B 4 C 4 D 2  + . . .) 
- 4 ( q -  1 ) 2 ~ 3 ( A 3 B 3 C 3 D + .  . .) 

+(m 
+(U 0) 
In the above expressions the do t s . .  . denote all the terms obtained from the first 

term by the action of the symmetric group Y4. 

Appendix 2 

Due to the Y4-symmetry of In A in the variables A, B, C and 0, it is possible to rewrite 
it in terms of the symmetric polynomials of A, E, C and D : S , ,  S2,  S3 ,  S,. For example 

A 3 B 3 C 3 D + .  . . = S 4 ( S : - 2 S 2 S 4 )  

A 5 B 5 C 3 D 3 + .  . .=S:(S:+2S4-2S,S3) 

A 4 B 3 C 4 D + .  . .=S4(S2S:-S,S3S4-2S:S4+4S~). 
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When all these calculations are performed, one gets the following expansion for 
z (d /dz )  In AIzzl 

Appendix 3 

The checkerboard Potts model is equivalent to an inhomogenous ice-rule six vertex 
model on a square lattice. For this particular model, one has four sublattices on the 
corresponding vertex model, denoted by w, U ’ ,  w”  and w’“ (see figure 3). The associated 
weights are given by (Baxter er a1 1978) 
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for i = 1 and 3 and respectively the vertex w and w”’. 

(@I ,  w2, w33 w49 05, wg) = ( X i ,  Xi, 1, 1, Bi, Ai) 

for i = 2 and 4 and respectively the vertex w ’  and w”. Here 

xi  = q-1/2(eK, - 11, = t - ’ l 2 +  X i t 1 I 2 ,  B~ = i l l 2 +  X i t - 1 / 2 ,  

and 
t + 1-1 = q l / 2 ,  

In an appropriate limit q + 0 ( x i q l l 2  + 0) the model can be solved exactly because the 
free-fermion condition (Fan and Wu (1970) becomes satisfied for each vertex. The 
exact expression for the partition function is given by (Lin and Tang 1976) 

4 8.rr l7 --11 d e  I_: d 4  lnlF(e, 411 

where 

F (  e,4) = a + 26 cos e + 2~ COS 4 - 2f COS( e + 4) - 2g cos( e - 4)  
and 

a = 2( 1 + xIx2x3x4) + AIA2A3A4+ B1 B2B3B4, 

6 = XI ~2 + ~3x4 ,  

c = x I x ~ + x ~ x ~ ,  

f = X2X4r g = XIX3. 

One notes the similarity of this expression with that obtained by Utiyama (1951) 
for the q = 2 limit of the checkerboard Potts model. Clearly the argument F (  8 , 4 )  is 
C4” invariant (symmetry of the square). In order to prove the Sp,-symmetry of the 
partition function we need only the invariance under the transposition K I  - K,. For 
this, let us rewrite F(  8, 4) as: a + p cos 6 + y sin 6 where 

a = a + 2 c  cos 4, 
p = 2 b - 2 ( f +  g )  COS 4, 

and 

y = 2 ( f -  g )  sin 4. 
The integration over 8 is easily performed and gives 27r In ;[a + ( a 2  - p2 - y2) ’12] .  
a is clearly invariant under the transposition K,-K4 and p 2 +  y 2 =  
4 [ ( b 2 + f 2  + g’) -t 2fg COS 2 4  - 2 b ( f +  g )  cos 41 is also invariant under that transposition. 

References 

Baxter R J 1982 J. Phys. A: Math. Gen. 15 3329 
- 1984 J. Phys. A: Math. Gen. 17 L911 
Baxter R J ,  Kelland S B and Wu F Y 1976 J. Phys. A: Math. Gen. 9 397 
Baxter R J, Temperley H N V and Ashley S E 1978 hoc.  R. Soc. A 358 535  
Domb C and Green M S (eds) 1972 Phase transitions and critical phenomena vol I (London: Academic) 

pp 285, 323 



846 J M Maillard and R Rammal 

Dotsenko V S and Fateev V A 1984 Conformal algebra and mulfipoinr correlation funcfion in 2 0  staristical 

Fan C and Wu F Y 1970 Phys. Rev. B 2 72 
Hintermann A, Kunz H and Wu F Y 1978 J. Sfaf. Phys. 19 623 
Jaekel M T and Maillard J M 1984 J. Phys. A: Marh. Gen. 17 2079 
Kim D 1981 Phys. Lerr. 87A 127 
Lin K Y and Tang D L 1976 J. Phys. A: Marh. Gen. 9 1685 
Maillard J M and Rammal R 1983 J. Phys. A: Math. Gen. 16 353 
Rammal R and Maillard J M 1983 J. Phys. A: Math. Gen. 16 1073 
Sherman S 1960 J. Math. Phys. 1 202 
- 1963 1. Math. Phys. 4 1213 
Stephen M J and Mittag L 1972 J. Math. Phys. 13 1944 
Syozi I and Naya S 1960 Progr. Theor. F'hys. 24 829 
Utiyama T 1951 Progr. Theor. Phys. 6 907 
Zamolodchikov A B 1984 Proceeding of Brasov Summer School (1983) (Birkhauser Edirors) to appear 

models, Nordita preprinr 


